

Using GRBs to study the high-z Universe (the JANUS mission)

David Burrows
The Pennsylvania State University



#### **GRBs and Swift**





Rapid GRB localizations by *Beppo-SAX*, *HETE-2*, and *Swift*:

- Dramatic increase in GRB max redshift
- Use of GRBs to probe high-z hosts and IGM



## **GRB Redshift Distribution**



 $\Rightarrow$  20% of Swift bursts should have z > 5



## **GRB Redshift Distribution**



- $\Rightarrow$  20% of Swift bursts should have z > 5
- $\Rightarrow$  Observed fraction with z > 5 is only 5%

- 1) GRB Luminosity function?
- 2) Observational bias?



#### **Observational Bias**





#### **JANUS**

- Designed to discover high redshift GRBs and quasars
- X-ray Coded Aperture Telescope (0.5-20 keV) + NIR Telescope (0.7-1.7 μm, R=14)
  - Optimized for detection and identification of high-z GRBs
  - > 50 GRBs with 5 < z < 12</li>
    - Star formation rate, finder for ground-based followup
  - 20,000 sq degree spectroscopic sky survey to discover





#### The JANUS Concept

- NASA Explorer mission
- Combines aspects of Swift and SDSS
  - Swift gamma-ray burst detection and observation - catching cosmic explosions "on the fly"
  - Sloan Digital Sky Survey quasar survey – discovering the end of the reionization era
- Fine-tuned for high redshift
  - Lower-energy burst monitor (XCAT)
  - Near-infrared imaging/spectroscopy (NIRT), 0.7-1.7 µm
    - Larger telescope than Swift + built-in (low-resolution) spectroscopy
  - Retains rapid response of Swift





## JANUS Science: Objective 1

# Measure the cosmic star formation rate over 5<z<12 by detecting and observing high-redshift gamma-ray bursts and their afterglows.

- JANUS will detect 50 bursts at z>5 over its two-year mission
- Burst detection with XCAT leads to slew and NIRT observation
- Afterglow position, flux, and redshift derived from NIRT data
- JANUS burst redshifts will reveal the cosmic star formation rate over 5 < z < 12</li>
- Stellar light was likely the dominant cause of the cosmic reionization
- Star formation estimates are crucial to constructing a full picture of reionization





## X-ray Coded Aperture Telescope (XCAT)

- David Burrows (PSU), Lead
- Covers twice the sky area of Swift (1/3 of all-sky)
- Lower-energy range to catch higherredshift bursts (1–20 keV)
- Improved position accuracy (20")
- 10 modules arranged in 2x5 "caterpillar" format
- For each module:
  - Coded aperture "shadow mask"
  - 4 hybrid CMOS detectors (Si)
  - Integrated readout electronics
- Triggering software from Swift BAT team (LANL)







## Large Field of View









## X-ray Coded Aperture Telescope (XCAT)

| Parameter          | XCAT                      |
|--------------------|---------------------------|
| Bandpass           | 1 – 20 keV                |
| FoV                | 3.9 sr                    |
| Ang. Resolution    | 6.3' (30") FWHM           |
| Effective Area     | 21 cm <sup>2</sup>        |
| ΔΕ/Ε               | 7% (<3%)                  |
| Δt                 | 0.5 s                     |
| DXRB rate          | ~ 540 cts s <sup>-1</sup> |
| Internal Bkgnd     | < 1 cps                   |
| Pt Src Sensitivity | 240 mCrabs (7σ, 30s)      |
| Triggering         | Swift BAT Heritage        |

# Single Module Effective Area 1.00E+02 1.00E+01 Grasp (cm^2 sr) —Effective Area (cm^2) 1.00E+02 1.00E+03 1.00E+04 1.00E+05 Energy (eV)





#### JANUS GRB Response

- XCAT detects and localizes X-ray Flashes and Gamma-Ray Bursts for follow-up by NIRT
  - XCAT determines position to ~ 30" in about 30 s
  - XCAT sends position to S/C and to ground
  - XCAT telemeters detailed light curve and spectral info





## JANUS GRB spectroscopy

~30 GRBs (6<z<12)







## JANUS Science: Objective 2

## Enumerate the brightest quasars over 6<z<10 and measure their contribution to reionization.

- JANUS will carry out a 20,000 deg<sup>2</sup> objective-prism survey in the 0.7–1.7 μm bandpass
- Reaching J=19.6 mag in the continuum (4σ) with resolution R≈14
- Anticipate 400 quasars at z>6, well beyond the capability of ground-based surveys
- Redshift and ionizing flux of each quasar measured directly from NIRT data
- Also anticipate discovery of the nearest and coolest (Y-class) brown dwarfs







### Near-Infrared Telescope (NIRT)

- Terry Herter (Cornell), Lead
- 50-cm aperture
- Direct imaging and low-resolution (objective prism) spectroscopy
- Covers 0.36 deg<sup>2</sup>, 0.7–1.7 µm, in a single exposure
- Lyman-alpha over 5 < z < 13</li>
- Two redundant rotating optical elements switch modes
- Detect and characterize afterglows of high-z gamma-ray bursts
- Field of view allows 1/2-sky survey



JANUS Field-of-View



Field-of-View



## JANUS Near Infrared Telescope

| Parameter          | NIRT                            |
|--------------------|---------------------------------|
| Aperture           | 0.5 m                           |
| Bandpass           | 0.7 – 1.7 μm                    |
| FoV                | 0.36 x 0.36 arcmin <sup>2</sup> |
| Ang.<br>Resolution | < 1.5 arcseconds                |
| λ/Δλ               | > 10                            |
| Zodiacal<br>Bkgnd  | 5-12 e <sup>-</sup> /s/pixel    |
| Imaging            | J=20.3                          |
| Sensitivity        | (S/N=5, 60s)                    |
| Dispersed          | J=19.6                          |
| Sensitivity        | (S/N=4, 480 s)                  |
| Focal Plane        | H2RG @ 150K                     |





## JANUS Quasar Survey

20,000 square degree survey (5x10<sup>8</sup> spectra) to J=19.6









## JANUS Science: Objective 3

# Enable detailed studies of the history of reionization and metal enrichment in the early Universe.

- Every JANUS burst and quasar will be bright enough for observation with current facilities
- Burst alerts reported in real time, including position, brightness, and redshift
- JANUS bursts will be used to measure the ionized fraction in the intergalactic medium
- Quasar catalog updated at 3-month intervals
- Each quasar will be a rewarding target for upcoming satellite and ground-based observatories



Simulated 1500s VLT spectrum of J=15 quasar @ z=7.5





#### **JANUS Context**

- Success of Swift & SDSS provide confidence that GRBs & quasars are strong probes of this early period
- JANUS provides strong synergy in a field with new & ambitious facilities designed to explore reionization:
  - Find high-z targets for upcoming observatories

WMAP Swift

JWST

2000 2005 2010 2015









**JANUS** 



#### JANUS Status

- Proposed to NASA in 2007 as SMEX
- Completed Phase A study
- Will be re-proposed in 2010 as Explorer
- Launch date ~ 2016





#### Summary

- Scientific exploitation of high-z GRBs to study cosmology is in its infancy, but recent discoveries are encouraging.
- JANUS mission will provide rapid localizations of high redshift GRBs and QSOs to spur work in this area.

